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Time-Scales of Perception 
This project explores how we as humans perceive our surroundings. Key to 
perception is the notion of scale, patterned behaviours, and our point-of-view.  
 
The project involves two recording devices, that record both video and sound 
as tides are coming in, in a location in X London. The recording device is either 
moving (Bobby), or fixed (Stillman). Having both moving and fixed observation 
platforms is standard in for example physical oceanography, where we are 
trying to understand global circulation and its potential change with climate 
change. There, we observe moored arrays that are fixed, and where we can 
determine how long it takes for phenomena to travel (see e.g. Ellipot et al (to 
appear)), or the recording device can be moving inside the phenomenon (see 
e.g. Lilly et al (2011), Sykulski et al (2016)). The first type of observation in 
known in applied maths as a Eulerian observation, as it observes fluids 
passing a fixed point. Leonhard Euler (Figure 1a), was a Swiss mathematician, 
who formulated the Euler equations that describe such motion in 1757. 
Lagrange (Figure 1b), the French mathematician, in contrast, formulated 
Lagrangian mechanics in the 1770s, and can describe phenomena while 
moving with the water motion. 
 
The notion of a Lagrangian or Eulerian representation of motion of a fluid are 
perfectly reflected by Bobby (Lagrangian), and Stillman (Eulerian), but can also 
be interpreted in terms of our notion of perception of an immersed and active 
participant, versus an objective and separate observer. Motion can also distort 
the object we are trying to understand, and we have been developing 
mathematical techniques to undue the effect of that distortion (Guillaumin et al, 
to appear). 
 
Another interesting aspect of the project is the notion of scale. The sound and 
images are recorded at a given rate (the sound for instance at 48 kHz), and so 
our notion of this signal will depend on how “quickly” we see it. Any signal can 
also be thought of as an aggregation of lots of periodic phenomena, that tell us 
which periods are most important. For instance, if the waves strike the beach, 
and come in and out at 1 wave per every 2 seconds, then we expect to see the 
presence of a period as one cycle per two seconds, which is 0.5 Hz. We notice 
that this is much slower than the possible recording of at 48 kHz, and so the 
sound of the waves can easily be recorded. In comparison, bird song normally 
has frequency content from 50 Hz (infrasound) to around 12 kHz. Other 
sounds than the waves striking the house where the project is recorded are 
boat engines, which normally live at less than 100 Hz (very low-frequency 
content). There is a limit to the lowest frequency you can get out of an 
observed signal, one over the length of the signal. The more exact you want to 
be about the frequencies in a signal, the longer time-window is needed. This 
corresponds to the Heisenberg-Gabor uncertainty principle, one of the most 
famous results in theoretical physics and information theory. As an example 
see Figure 2 with typical frequency content. Figure 2a for instance shows lots 
of smooth changes to the signal (low frequency), which might be expected 
from an engine or the overall wave sound. Figure 2a also has sudden pops 
which correspond to extreme local time changes, but is spread over 
frequencies. Figure 2b shows varying frequency content, where some of it is 
evolving over time. As an oscillation increases frequency content, we call it 
‘chirping’, which is common for example in whale song.  
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Figure 1: (from Wikipedia) (a) Euler and (b) Lagrange 
 

	
Figure 2: Illustration of the Heisenberg-Gabor uncertainty principle. 
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